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 Cluster analysis, also called data clustering, taxonomy analysis, or unsupervised classification, is a 

method of creating groups of objects in such a way that objects in one cluster are very similar and 

objects in different clusters are quite distinct. Cluster analysis has been developed in various 

disciplines: computer science, economics, engineering, psychology, biology, medical science, and so on. 

Particularly, K-means clustering, the most popular and the simplest partitional algorithm, is used 

extensively in real world and studied in various scientific fields. K-means clustering is designed to 

partition n objects into K classes. The number of clusters K is specified by users.  

 When the number of variables becomes large, or a cluster structure lies in a low-dimensional subspace 

of data, it is widely known that the conventional K-means algorithm does not work well. This problem is 

called “Curse of Dimensionality” (Bellman, 1957). In this case, researchers often apply the following 

two-steps procedure; [1] carry out principal component analysis (PCA) for dimension reduction, and [2] 

apply the conventional K-means algorithm to the principal scores on the first few principal components. 

This approach is called “tandem clustering” and widely used as common subspace clustering. However, 

it has been criticized by several authors, because PCA may identify dimensions that do not necessarily 

contribute much to capturing an underlying cluster structure in a data set. In other words, each step in 

this approach aims to optimize a different optimization criterion. 

 To avoid this problem, De Soete & Carroll (1994) proposed a method simultaneously partitioning the n 

objects in X into K clusters and finding the q components that summarize p variables, with K ＜ n and 

q ＜ p. This method, called “Reduced K-means” (RKM), is formulated by combining the objective 

function of K-means clustering and that for principal component analysis (PCA) into a single criterion to 

be optimized. Therefore, RKM could identify the low-dimensional space that keeps the information 

about the cluster structure underlying a data set. Let X be an n-objects × p-variables data matrix. 

The model of RKM is written as  

fRKM(U,C,A)＝||X−UCA’||2 

 

where U is an n × K binary indicator matrix, C is a K × q matrix of cluster centroids, and A is a p 

× q loading matrix. The constraint A’A＝I is imposed on the loading matrix, where I represent an 

identity matrix.   

 The purpose of our research is to modify this RKM model so that loading matrix A is easier to 

interpret. If the matrix is sparse, i.e., includes a number of zero elements, its interpretation is facilitated. 

The elements of loadings indicate how strongly each of the observed variables (rows) contributes to the 

principal components (columns). If the principal components are constructed by a small subset of the 

observed variables, they are said to be interpretable. However, this is not often the case. Each principal 

component is represented by a linear combination of all observed variables. Especially, when the number 

of variables becomes large, this complicates the interpretation of the low-dimensional space extracted 

by RKM. In RKM or other clustering methods, one of the most important purposes is to capture the 



characteristics of each cluster. Then, we need to obtain a loading matrix which indicates an 

interpretable low-dimensional subspace in which every cluster is embedded.  

 Thus, we solved this problem by employing some penalty constraints on the loadings obtained by RKM. 

Such penalty constraints make the loading matrix sparse mathematically. In our paper, we took two 

approaches to achieve it; [1] cardinality constraint approach, and [2] LASSO type penalized approach.   

 In first approach, we consider the following minimization problem: 

 

MinU,C,A ||X−UCA’||2  s.t. C’U’UC＝nI, card(A)＝m . 

 

In this equation, the second constraint card(A) indicates the cardinality of A and the number of 

cardinality m should be specified by users. The cardinality is the number of non-zero elements in an 

arbitrary matrix. Thus, the cardinality parameter m controls the sparsity of A. We can solve this 

minimization problem by using an alternating least-squares algorithm.  

 In second proposal, we consider the following minimization problem: 

 

MinU,C,A ||X−UCA’||2  s.t. C’U’UC＝I, ||aj||1≦t, diag(A’A)＝I , 

 

where aj (j ＝ 1,…,q) are column vectors of A and t is the tuning parameter which controls the sparsity 

of loadings. In this equation, the second constraint ||aj||1≦t is called L1-norm penalty function, or 

LASSO type penalty, and widely used in the area of statistics. With fixed F＝UC, this equation can be 

reformulated as following maximization problem: 

 

Maxaj fj’Xaj s.t. ||aj||1≦t, aj’ aj ≦ 1 (j ＝ 1,…,q) . 

 

This reformulation takes the key role in an algorithm.  

 In both proposed methods, we must choose the sparsity parameter (m and t) in advance. Generally, the 

appropriate values of these parameters are unknown. In practical situation, we recommend to use some 

cross-validation (CV) methods for selecting these parameters (e.g. Wang, 2010). However, the existing 

CV methods choose the optimal values based only on clustering instability, not on interpretability of the 

loadings. Thus, we should prove that the validity of using these CV methods for our proposals. It 

remains as our future work. 
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